首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   17篇
  国内免费   2篇
化学   217篇
晶体学   1篇
力学   8篇
数学   30篇
物理学   52篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   29篇
  2018年   15篇
  2017年   9篇
  2016年   30篇
  2015年   19篇
  2014年   20篇
  2013年   30篇
  2012年   22篇
  2011年   9篇
  2010年   21篇
  2009年   17篇
  2008年   10篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1979年   2篇
  1975年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
11.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   
12.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   
13.
14.
In this study, the biologically active configurations composed of Thiazolidinedione–Uracil (TU) and Rhodanine–Uracil (RU) have been fully investigated from the energetic and structural points of view, employing B3LYP and M062X functionals in combination with the different basis sets. Dispersion corrections to the interaction energy using M062X–GD3 and double hybrid density functionals (B2PLYP–GD2, B2PLYP–GD3 and mPW2PLYP–GD2) are also taking into account. The basis set superposition error-corrected interaction energy for hydrogen bonded configurations ranges from ??5.27 to ??13.53 and ??5.25 to ??12.93 kcal/mol for TU and RU complexes respectively as calculated at M062X/6–311++G(df,pd) level. The charge transfer process within all of the TU and RU configurations were analyzed using Natural Bond Orbital (NBO) calculations. The nature of the interactions is analyzed with NBO and Atoms in Molecules (AIM) analysis at M062X/6–311++G(df,pd) and energy decomposition analysis at BP86–D3/TZ2P(ZORA)//M062X/6–311++G(df,pd) level of theory. The results confirm that the nature of the interactions is nearly electrostatic, with a contribution of about 51–56% of the total interaction energy. The orbital interactions (ΔEorb) for the considered TU and RU complexes have a contribution of about 24–38% of the total interaction energy. Based on the AIM and NBO results, the interactions were defined as electrostatic H-bonds with partially covalent character. In addition, correlation between interaction energies and vibrational frequency changes was investigated.  相似文献   
15.
16.
17.
Abstract

This is the first report on applying the Mitsunobu protocol for the synthesis of various α-acyloxyphosphonates using 4,4′-azopyridine and PPh3 with diverse aromatic and aliphatic carboxylic acids. Under these conditions, diethyl azodicarboxylate (DEAD) as the traditional reagent for Mitsunobu reaction is not efficient. The insoluble pyridine hydrazine byproduct can be simply isolated and recycled to its azopyridine by an oxidation reaction and reused again.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Characterization data of compounds 3a–3z2 and NMR spectra.]

GRAPHICAL ABSTRACT   相似文献   
18.
Here, we introduce a new technique called embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) for preconcentration, separation, or enrichment of bioparticles, including living cells. This new method combines traditional electrode-based DEP and insulator-based DEP with the objective of enhancing the electric field strength and capture efficiency within the microfluidic channel while alleviating direct contact between the electrode and the fluid. The EπDEP chip contains embedded electrodes within the microfluidic channel covered by a thin passivation layer of only 4 μm. The channel was designed with two nonaligned vertical columns of insulated microposts (200 μm diameter, 50 μm spacing) located between the electrodes (600 μm wide, 600 μm horizontal spacing) to generate nonuniform electric field lines to concentrate cells while maintaining steady flow in the channel. The performance of the chip was demonstrated using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial pathogens in aqueous media. Trapping efficiencies of 100 % were obtained for both pathogens at an applied AC voltage of 50 V peak-to-peak and flow rates as high as 10 μl/min.  相似文献   
19.
During the past 7 years and since the introduction of dispersive liquid–liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.  相似文献   
20.
Nickel(II) and copper(II) complexes of two unsymmetrical tetradentate Schiff base ligands [Ni(Me-salabza)] (1), [Cu(Me-salabza)] (2) and [Ni(salabza)] (3), {H2salabza = N,N′-bis[(salicylidene)-2-aminobenzylamine] and H2Me-salabza = N,N′-bis[(methylsalicylidene)-2-aminobenzylamine]}, have been synthesized and characterized by elemental analysis and spectroscopic methods. The crystal structures of 2 and 3 complexes have been determined by single crystal X-ray diffraction. Both copper(II) and nickel(II) ions adopt a distorted square planar geometry in [Cu(Me-salabza)] and [Ni(salabza)] complexes. The cyclic voltammetric studies of these complexes in dichloromethane indicate the electronic effects of the methyl groups on redox potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号